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2.6  TRADITIONAL UNIX SYSTEMS

History

The history of UNIX is an oft-told tale and will not be repeated in great detail here. Instead, we

provide a brief summary.

UNIX was initially developed at Bell Labs and became operational on a PDP-7 in 1970.

Some of the people involved at Bell Labs had also participated in the time-sharing work being

done at MIT's Project MAC. That project led to the development of first CTSS and then Multics.

Although it is common to say that the original UNIX was a scaled-down version of Multics, the

developers of UNIX actually claimed to be more influenced by CTSS [RITC78]. Nevertheless,

UNIX incorporated many ideas from Multics.

Work on UNIX at Bell Labs, and later elsewhere, produced a series of versions of UNIX.

The first notable milestone was porting the UNIX system from the PDP-7 to the PDP-11. This

was the first hint that UNIX would be an operating system for all computers. The next important

milestone was the rewriting of UNIX in the programming language C. This was an unheard-of

strategy at the time. It was generally felt that something as complex as an operating system,

which must deal with time-critical events, had to be written exclusively in assembly language.

The  C implementation demonstrated the advantages of using a high-level language for most if

not all of the system code. Today, virtually all UNIX implementations are written in C.

These early versions of UNIX were popular within Bell Labs. In 1974, the UNIX system

was described in a technical journal for the first time [RITC74]. This spurred great interest in the

system. Licenses for UNIX were provided to commercial institutions as well as universities. The

first widely available version outside Bell Labs was Version 6, in 1976. The follow-on Version

7, released in 1978, is the ancestor of most modern UNIX systems. The most important of the

non-AT&T systems to be developed was done at the University of California at Berkeley, called

UNIX BSD (Berkeley Software Distribution), running first on PDP and then VAX machines.

AT&T continued to develop and refine the system. By 1982, Bell Labs had combined several
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AT&T variants of UNIX into a single system, marketed commercially as UNIX System III. A

number of features was later added to the operating system to produce UNIX System V.

Description

Figure 2.14 provides a general description of the UNIX architecture. The underlying hardware is

surrounded by the operating system software. The operating system is often called the system

kernel, or simply the kernel, to emphasize its isolation from the user and applications. This

portion of UNIX is what we will be concerned with in our use of UNIX as an example in this

book. However, UNIX comes equipped with a number of user services and interfaces that are

considered part of the system. These can be grouped into the shell, other interface software, and

the components of the C compiler (compiler, assembler, loader). The layer outside of this

consists of user applications and the user interface to the C compiler.

A closer look at the kernel is provided in Figure 2.15. User programs can invoke operating

system services either directly or through library programs. The system call interface is the

boundary with the user and allows higher-level software to gain access to specific kernel

functions. At the other end, the operating system contains primitive routines that interact directly

with the hardware. Between these two interfaces, the system is divided into two main parts, one

concerned with process control and the other concerned with file management and I/O. The

process control subsystem is responsible for memory management, the scheduling and

dispatching of processes, and the synchronization and interprocess communication of processes.

The file system exchanges data between memory and external devices either as a stream of

characters or in blocks. To achieve this, a variety of device drivers are used. For block-oriented

transfers, a disk cache approach is used: a system buffer in main memory is interposed between

the user address space and the external device.

The description in this subsection has dealt with what might be termed traditional UNIX

systems; [VAHA96] uses this term to refer to System V Release 3 (SVR3), 4.3BSD, and earlier

versions. The following general statements may be made about a traditional UNIX system. It is
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designed to run on a single processor and lacks the ability to protect its data structures from

concurrent access by multiple processors. Its kernel is not very versatile, supporting a single type

of file system, process scheduling policy, and executable file format. The traditional UNIX

kernel is not designed to be extensible and has few facilities for code reuse. The result is that, as

new features were added to the various UNIX versions, much new code had to be added,

yielding a bloated and unmodular kernel.

2.7  MODERN UNIX SYSTEMS

As UNIX evolved, the number of different implementations proliferated, each providing some

useful features. There was a need to produce a new implementation that unified many of the

important innovations, added other modern operating system design features, and produced a

more modular architecture. Typical of the modern UNIX kernel is the architecture depicted in

Figure 2.16. There is a small core of facilities, written in a modular fashion, that provide

functions and services needed by a number of operating system processes. Each of the outer

circles represents functions and an interface that may be implemented in a variety of ways.

We now turn to some examples of modern UNIX systems.

System V Release 4 (SVR4)

SVR4, developed jointly by AT&T and Sun Microsystems, combines features from SVR3,

4.3BSD, Microsoft Xenix System V, and SunOS. It was almost a total rewrite of the System V

kernel and produced a clean, if complex, implementation. New features in the release include

real-time processing support, process scheduling classes, dynamically allocated data structures,

virtual memory management, virtual file system, and a preemptive kernel.

SVR4 draws on the efforts of both commercial and academic designers and was developed

to provide a uniform platform for commercial UNIX deployment. It has succeeded in this

objective and is perhaps the most important UNIX variant. It incorporates most of the important
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features ever developed on any UNIX system and does so in an integrated, commercially viable

fashion. SVR4 is running on machines ranging from 32-bit microprocessors up to

supercomputers. Many of the UNIX examples in this book are from SVR4.

Solaris 9

Solaris is Sun's SVR4-based UNIX release, with the latest version being 9. Solaris provides all of

the features of SVR4 plus a number of more advanced features, such as a fully preemptable,

multithreaded kernel, full support for SMP, and an object-oriented interface to file systems.

Solaris is the most widely used and most successful commercial UNIX implementation. For

some operating system features, Solaris provides the UNIX examples in this book.

4.4BSD

The Berkeley Software Distribution (BSD) series of UNIX releases have played a key role in the

development of operating system design theory. 4.xBSD is widely used in academic installations

and has served as the basis of a number of commercial UNIX products. It is probably safe to say

that BSD is responsible for much of the popularity of UNIX and that most enhancements to

UNIX first appeared in BSD versions.

4.4BSD was the final version of BSD to be released by Berkeley, with the design and

implementation organization subsequently dissolved. It is a major upgrade to 4.3BSD and

includes a new virtual memory system, changes in the kernel structure, and a long list of other

feature enhancements.

The latest version of the Macintosh operating system, Mac OS X, is based on 4.4BSD.



-7-

3.5 UNIX SVR4 PROCESS MANAGEMENT

UNIX System V makes use of a simple but powerful process facility that is highly visible to the

user. UNIX follows the model of Figure 3.15b, in which most of the operating system executes

within the environment of a user process. Thus, two modes, user and kernel, are required. UNIX

uses two categories of processes: system processes and user processes. System processes run in

kernel mode and execute operating system code to perform administrative and housekeeping

functions, such as allocation of memory and process swapping. User processes operate in user

mode to execute user programs and utilities and in kernel mode to execute instructions that

belong to the kernel. A user process enters kernel mode by issuing a system call, when an

exception (fault) is generated, or when an interrupt occurs.

Process States

A total of nine process states are recognized by the UNIX operating system; these are listed in

Table 3.9 and a state transition diagram is shown in Figure 3.17 (based on figure in [BACH86]).

This figure is similar to Figure 3.9b, with the two UNIX sleeping states corresponding to the two

blocked states. The differences can be summarized quickly:

• UNIX employs two Running states to indicate whether the process is executing in user

mode or kernel mode.

• A distinction is made between the two states: (Ready to Run, in Memory) and (Preempted).

These are essentially the same state, as indicated by the dotted line joining them. The

distinction is made to emphasize the way in which the preempted state is entered. When a

process is running in kernel mode (as a result of a supervisor call, clock interrupt, or I/O

interrupt), there will come a time when the kernel has completed its work and is ready to

return control to the user program. At this point, the kernel may decide to preempt the

current process in favor of one that is ready and of higher priority. In that case, the current
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process moves to the preempted state. However, for purposes of dispatching, those

processes in the preempted state and those in the Ready to Run, in Memory state form one

queue.

Preemption can only occur when a process is about to move from kernel mode to user

mode. While a process is running in kernel mode, it may not be preempted. This makes UNIX

unsuitable for real-time processing. A discussion of the requirements for real-time processing is

provided in Chapter 10.

Two processes are unique in UNIX. Process 0 is a special process that is created when the

system boots; in effect, it is predefined as a data structure loaded at boot time. It is the swapper

process. In addition, process 0 spawns process 1, referred to as the init process; all other

processes in the system have process 1 as an ancestor. When a new interactive user logs onto the

system, it is process 1 that creates a user process for that user. Subsequently, the user process can

create child processes in a branching tree, so that any particular application can consist of a

number of related processes.
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Table 3.9   UNIX Process States

User Running Executing in user mode.

Kernel Running Executing in kernel mode.

Ready to Run, in Memory Ready to run as soon as the kernel schedules it.

Asleep in Memory Unable to execute until an event occurs; process is in main memory
(a blocked state).

Ready to Run, Swapped Process is ready to run, but the swapper must swap the process into
main memory before the kernel can schedule it to execute.

Sleeping, Swapped The process is awaiting an event and has been swapped to
secondary storage (a blocked state).

Preempted Process is returning from kernel to user mode, but the kernel
preempts it and does a process switch to schedule another process.

Created Process is newly created and not yet ready to run.

Zombie Process no longer exists, but it leaves a record for its parent process
to collect.

Process Description

A process in UNIX is a rather complex set of data structures that provide the operating system

with all of the information necessary to manage and dispatch processes. Table 3.10 summarizes

the elements of the process image, which are organized into three parts: user-level context,

register context, and system-level context.
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Table 3.10   UNIX Process Image

User-Level Context

Process text Executable machine instructions of the program
Process data Data accessible by the program of this process
User stack Contains the arguments, local variables, and pointers for functions

executing in user mode
Shared memory Memory shared with other processes, used for interprocess

communication

Register Context

Program counter Address of next instruction to be executed; may be in kernel or
user memory space of this process

Processor status register Contains the hardware status at the time of preemption; contents
and format are hardware dependent

Stack pointer Points to the top of the kernel or user stack, depending on the mode
of operation at the time or preemption

General-purpose registers Hardware dependent

System-Level Context

Process table entry Defines state of a process; this information is always accessible to
the operating system

U (user) area Process control information that needs to be accessed only in the
context of the process

Per process region table Defines the mapping from virtual to physical addresses; also
contains a permission field that indicates the type of access
allowed the process: read-only, read-write, or read-execute

Kernel stack Contains the stack frame of kernel procedures as the process
executes in kernel mode

The user-level context contains the basic elements of a user's program and can be

generated directly from a compiled object file. The user's program is separated into text and data

areas; the text area is read-only and is intended to hold the program's instructions. While the

process is executing, the processor uses the user stack area for procedure calls and returns and

parameter passing. The shared memory area is a data area that is shared with other processes.

There is only one physical copy of a shared memory area, but, by the use of virtual memory, it

appears to each sharing process that the shared memory region is in its address space. When a

process is not running, the processor status information is stored in the register context area.

The system-level context contains the remaining information that the operating system

needs to manage the process. It consists of a static part, which is fixed in size and stays with a

process throughout its lifetime, and a dynamic part, which varies in size through the life of the
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process. One element of the static part is the process table entry. This is actually part of the

process table maintained by the operating system, with one entry per process. The process table

entry contains process control information that is accessible to the kernel at all times; hence, in a

virtual memory system, all process table entries are maintained in main memory. Table 3.11 lists

the contents of a process table entry. The user area, or U area, contains additional process control

information that is needed by the kernel when it is executing in the context of this process; it is

also used when paging processes to and from memory. Table 3.12 shows the contents of this

table.

The distinction between the process table entry and the U area reflects the fact that the

UNIX kernel always executes in the context of some process. Much of the time, the kernel will

be dealing with the concerns of that process. However, some of the time, such as when the kernel

is performing a scheduling algorithm preparatory to dispatching another process, it will need

access to information about other processes. The information in a process table can be accessed

when the given process is not the current one.

The third static portion of the system-level context is the per process region table, which is

used by the memory management system. Finally, the kernel stack is the dynamic portion of the

system-level context. This stack is used when the process is executing in kernel mode and

contains the information that must be saved and restored as procedure calls and interrupts occur.
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Table 3.11  UNIX Process Table Entry

Process status Current state of process.

Pointers To U area and process memory area (text, data, stack).

Process size Enables the operating system to know how much space to allocate
the process.

User identifiers The real user ID identifies the user who is responsible for the
running process. The effective user ID may be used by a process
to gain temporary privileges associated with a particular program;
while that program is being executed as part of the process, the
process operates with the effective user ID.

Process identifiers ID of this process; ID of parent process. These are set up when the
process enters the Created state during the fork system call.

Event descriptor Valid when a process is in a sleeping state; when the event occurs,
the process is transferred to a ready-to-run state.

Priority Used for process scheduling.

Signal Enumerates signals sent to a process but not yet handled.

Timers Include process execution time, kernel resource utilization, and
user-set timer used to send alarm signal to a process.

P_link Pointer to the next link in the ready queue (valid if process is ready
to execute).

Memory status Indicates whether process image is in main memory or swapped
out. If it is in memory, this field also indicates whether it may be
swapped out or is temporarily locked into main memory.
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Table 3.12   UNIX U Area

Process table pointer Indicates entry that corresponds to the U area.

User identifiers Real and effective user IDs. Used to determine user privileges.

Timers Record time that the process (and its descendants) spent executing
in user mode and in kernel mode.

Signal-handler array For each type of signal defined in the system, indicates how the
process will react to receipt of that signal (exit, ignore, execute
specified user function).

Control terminal Indicates login terminal for this process, if one exists.

Error field Records errors encountered during a system call.

Return value Contains the result of system calls.

I/O parameters Describe the amount of data to transfer, the address of the source
(or target) data array in user space, and file offsets for I/O.

File parameters Current directory and current root describe the file system
environment of the process.

User file descriptor table Records the files the process has open.

Limit fields Restrict the size of the process and the size of a file it can write.

Permission modes fields Mask mode settings on files the process creates.

Process Control

Process creation in UNIX is made by means of the kernel system call, fork( ). When a process

issues a fork request, the operating system performs the following functions [BACH86]:

1. It allocates a slot in the process table for the new process.

2. It assigns a unique process ID to the child process.

3. It makes a copy of the process image of the parent, with the exception of any shared

memory.

4. It increments counters for any files owned by the parent, to reflect that an additional

process now also owns those files.
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5. It assigns the child process to the Ready to Run state.

6. It returns the ID number of the child to the parent process, and a 0 value to the child

process.

All of this work is accomplished in kernel mode in the parent process. When the kernel has

completed these functions it can do one of the following, as part of the dispatcher routine:

1. Stay in the parent process. Control returns to user mode at the point of the fork call of the

parent.

2. Transfer control to the child process. The child process begins executing at the same

point in the code as the parent, namely at the return from the fork call.

3. Transfer control to another process. Both parent and child are left in the Ready to Run

state.

It is perhaps difficult to visualize this method of process creation because both parent and

child are executing the same passage of code. The difference is this: when the return from the

fork occurs, the return parameter is tested. If the value is zero, then this is the child process, and

a branch can be executed to the appropriate user program to continue execution. If the value is

nonzero, then this is the parent process, and the main line of execution can continue.
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4.5  SOLARIS THREAD AND SMP MANAGEMENT

Solaris implements an unusual multilevel thread support designed to provide considerable

flexibility in exploiting processor resources.

Multithreaded Architecture

Solaris makes use of four separate thread-related concepts:

• Process: This is the normal UNIX process and includes the user's address space, stack, and

process control block.

• User-level threads: Implemented through a threads library in the address space of a

process, these are invisible to the operating system. User-level threads (ULTs)1 are the

interface for application parallelism.

• Lightweight processes: A lightweight process (LWP) can be viewed as a mapping

between ULTs and kernel threads. Each LWP supports one or more ULTs and maps to one

kernel thread. LWPs are scheduled by the kernel independently and may execute in parallel

on multiprocessors.

• Kernel threads: These are the fundamental entities that can be scheduled and dispatched

to run on one of the system processors.

Figure 4.15 illustrates the relationship among these four entities. Note that there is always

exactly one kernel thread for each LWP. An LWP is visible within a process to the application.

Thus, LWP data structures exist within their respective process address space. At the same time,

each LWP is bound to a single dispatchable kernel thread, and the data structure for that kernel

thread is maintained within the kernel's address space.

                                                

1 Again, the acronym ULT is unique to this book and is not found in the Solaris literature.
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In our example, process 1 consists of a single ULT bound to a single LWP. Thus, there is a

single thread of execution, corresponding to a traditional UNIX process. When concurrency is

not required within a single process, an application uses this process structure. Process 2

corresponds to a pure ULT strategy. All of the ULTs are supported by a single kernel thread, and

therefore only one ULT can execute at a time. This structure is useful for an application that can

best be programmed in a way that expresses concurrency but for which it is not necessary to

have parallel execution of multiple threads. Process 3 shows multiple threads multiplexed on a

lesser number of LWPs. In general, Solaris allows applications to multiplex ULTs on a lesser or

equal number of LWPs. This enables the application to specify the degree of parallelism at the

kernel level that will support this process. Process 4 has its threads permanently bound to LWPs

in a one-to-one mapping. This structure makes the kernel-level parallelism fully visible to the

application. It is useful if threads will typically or frequently be suspended in a blocking fashion.

Process 5 shows both a mapping of multiple ULTs onto multiple LWPs and the binding of a

ULT to a LWP. In addition, one LWP is bound to a particular processor.

Not shown in the figure is the presence of kernel threads that are not associated with LWPs.

The kernel creates, runs, and destroys these kernel threads to execute specific system functions.

The use of kernel threads rather than kernel processes to implement system functions reduces the

overhead of switching within the kernel (from a process switch to a thread switch).

Motivation

The combination of user-level and kernel-level threads gives the application programmer the

opportunity to exploit concurrency in a way that is most efficient and most appropriate to a given

application.

Some programs have logical parallelism that can be exploited to simplify and structure the

code but do not need hardware parallelism. For example, an application that employs multiple

windows, only one of which is active at a time, could with advantage be implemented as a set of

ULTs on a single LWP. The advantage of restricting such applications to ULTs is efficiency.
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ULTs may be created, destroyed, blocked, activated, and so on. without involving the kernel. If

each ULT were known to the kernel, the kernel would have to allocate kernel data structures for

each one and perform thread switching. As we have seen (Table 4.1), kernel-level thread

switching is more expensive than user-level thread switching.

If an application involves threads that may block, such as when performing I/O, then

having multiple LWPs to support an equal or greater number of ULTs is attractive. Neither the

application nor the threads library need perform contortions to allow other threads within the

same process to execute. Instead, if one thread in a process blocks, other threads within the

process may run on the remaining LWPs.

Mapping ULTs one-to-one to LWPs is effective for some applications. For example, a

parallel array computation could divide the rows of its arrays among different threads. If there is

exactly one ULT per LWP, then no thread switching is required for the computation to proceed.

A mixture of threads that are permanently bound to LWPs and unbound threads (multiple

threads sharing multiple LWPs) is appropriate for some applications. For example, a real-time

application may want some threads to have system wide priority and real-time scheduling, while

other threads perform background functions and can share one or a small pool of LWPs.

Table 4.1    Thread and Process Operation Latencies (µs) [ANDE92]

Operation User-Level Threads
Kernel-Level

Threads Processes

Null Fork 34 948 11,300

Signal Wait 37 441 1,840
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Process Structure

Figure 4.16 compares, in general terms, the process structure of a traditional UNIX system with

that of Solaris. On a typical UNIX implementation, the process structure includes the process ID;

the user IDs; a signal dispatch table, which the kernel uses to decide what to do when sending a

signal to a process; file descriptors, which describe the state of files in use by this process; a

memory map, which defines the address space for this process; and a processor state structure,

which includes the kernel stack for this process. Solaris retains this basic structure but replaces

the processor state block with a list of structures containing one data block for each LWP.

The LWP data structure includes the following elements:

• An LWP identifier

• The priority of this LWP and hence the kernel thread that supports it

• A signal mask that tells the kernel which signals will be accepted

• Saved values of user-level registers (when the LWP is not running)

• The kernel stack for this LWP, which includes system call arguments, results, and error

codes for each call level

• Resource usage and profiling data

• Pointer to the corresponding kernel thread

• Pointer to the process structure

Thread Execution

Figure 4.17 shows a simplified view of both ULT and LWP execution states. The execution of

user-level threads is managed by the threads library. Let us first consider unbound threads, that

is, threads that share a number of LWPs. An unbound thread can be in one of four states:

runnable, active, sleeping, or stopped. A ULT in the active state is currently assigned to a LWP

and executes while the underlying kernel thread executes. A number of events may cause the
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Figure 4.17   Solaris User-Level Thread and LWP States
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ULT to leave the active state. Let us consider an active ULT called T1. The following events

may occur:

• Synchronization: T1 invokes one of the concurrency primitives discussed in Chapter 5 to

coordinate its activity with other threads and to enforce mutual exclusion. T1 is placed in

the sleeping state. When the synchronization condition is met, T1 is moved to the runnable

state.

• Suspension: Any thread (including T1) may cause T1 to be suspended and placed in the

stopped state. T1 remains in that state until another thread issues a continue request, which

moves it to the runnable state.

• Preemption: An active thread (T1 or some other thread) does something that causes

another thread (T2) of higher priority to become runnable. If T1 is the lowest-priority

active thread, it is preempted and moved to the runnable state, and T2 is assigned to the

LWP made available.

• Yielding: If T1 executes the thr_yield( ) library command, the threads scheduler in

the library will look to see if there is another runnable thread (T2) of the same priority. If

so, T1 is placed in the runnable state and T2 is assigned to the LWP that is freed. If not, T1

continues to run.

In all of the preceding cases, when T1 is moved out of the active state, the threads library selects

another unbound thread in the runnable state and runs it on the newly available LWP.

Figure 4.17 also shows the state diagram for an LWP. We can view this state diagram as a

detailed description of the ULT active state, because an unbound thread only has an LWP

assigned to it when it is in the Active state. The LWP state diagram is reasonably self-

explanatory. An active thread is only executing when its LWP is in the Running state. When an

active thread executes a blocking system call, the LWP enters the Blocked state. However, the
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ULT remains bound to that LWP and, as far as the threads library is concerned, that ULT

remains active.

With bound threads, the relationship between ULT and LWP is slightly different. For

example, if a bound ULT moves to the Sleeping state awaiting a synchronization event, its LWP

must also stop running. This is accomplished by having the LWP block on a kernel-level

synchronization variable.

Interrupts as Threads

Most operating systems contain two fundamental forms of concurrent activity: processes and

interrupts. Processes (or threads) cooperate with each other and manage the use of shared data

structures by means of a variety of primitives that enforce mutual exclusion (only one process at

a time can execute certain code or access certain data) and that synchronize their execution.

Interrupts are synchronized by preventing their handling for a period of time. Solaris unifies

these two concepts into a single model, namely kernel threads and the mechanisms for

scheduling and executing kernel threads. To do this, interrupts are converted to kernel threads.

The motivation for converting interrupts to threads is to reduce overhead. Interrupt handlers

often manipulate data shared by the rest of the kernel. Therefore, while a kernel routine that

accesses such data is executing, interrupts must be blocked, even though most interrupts will not

affect that data. Typically, the way this is done is for the routine to set the interrupt priority level

higher to block interrupts and then lower the priority level after access is completed. These

operations take time. The problem is magnified on a multiprocessor system. The kernel must

protect more objects and may need to block interrupts on all processors.

The solution in Solaris can be summarized as follows:

1. Solaris employs a set of kernel threads to handle interrupts. As with any kernel thread, an

interrupt thread has its own identifier, priority, context, and stack.
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2. The kernel controls access to data structures and synchronizes among interrupt threads

using mutual exclusion primitives, of the type discussed in Chapter 5. That is, the normal

synchronization techniques for threads are used in handling interrupts.

3. Interrupt threads are assigned higher priorities than all other types of kernel threads.

When an interrupt occurs, it is delivered to a particular processor and the thread that was

executing on that processor is pinned. A pinned thread cannot move to another processor and its

context is preserved; it is simply suspended until the interrupt is processed. The processor then

begins executing an interrupt thread. There is a pool of deactivated interrupt threads available, so

that a new thread creation is not required. The interrupt thread then executes to handle the

interrupt. If the handler routine needs access to a data structure that is currently locked in some

fashion for use by another executing thread, the interrupt thread must wait for access to that data

structure. An interrupt thread can only be preempted by another interrupt thread of higher

priority.

Experience with Solaris interrupt threads indicates that this approach provides superior

performance to the traditional interrupt-handling strategy [KLEI95].
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6.7  UNIX CONCURRENCY MECHANISMS

UNIX provides a variety of mechanisms for interprocessor communication and synchronization.

Here, we look at the most important of these:

• Pipes

• Messages

• Shared memory

• Semaphores

• Signals

Pipes, messages, and shared memory can be used to communicate data between processes,

whereas semaphores and signals are used to trigger actions by other processes.

Pipes

One of the most significant contributions of UNIX to the development of operating systems is

the pipe. Inspired by the concept of coroutines [RITC84], a pipe is a circular buffer allowing two

processes to communicate on the producer-consumer model. Thus, it is a first-in-first-out queue,

written by one process and read by another.

When a pipe is created, it is given a fixed size in bytes. When a process attempts to write

into the pipe, the write request is immediately executed if there is sufficient room; otherwise the

process is blocked. Similarly, a reading process is blocked if it attempts to read more bytes than

are currently in the pipe; otherwise the read request is immediately executed. The operating

system enforces mutual exclusion: that is, only one process can access a pipe at a time.

There are two types of pipes: named and unnamed. Only related processes can share

unnamed pipes, while either related or unrelated processes can share named pipes.
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Messages

A message is a block of bytes with an accompanying type. UNIX provides msgsnd and

msgrcv system calls for processes to engage in message passing. Associated with each process

is a message queue, which functions like a mailbox.

The message sender specifies the type of message with each message sent, and this can be

used as a selection criterion by the receiver. The receiver can either retrieve messages in first-in-

first-out order or by type. A process will block when trying to send a message to a full queue. A

process will also block when trying to read from an empty queue. If a process attempts to read a

message of a certain type and fails because no message of that type is present, the process is not

blocked.

Shared Memory

The fastest form of interprocess communication provided in UNIX is shared memory. This is a

common block of virtual memory shared by multiple processes. Processes read and write shared

memory using the same machine instructions they use to read and write other portions of their

virtual memory space. Permission is read-only or read-write for a process, determined on a per-

process basis. Mutual exclusion constraints are not part of the shared-memory facility but must

be provided by the processes using the shared memory.

Semaphores

The semaphore system calls in UNIX System V are a generalization of the semWait and

semSignal primitives defined in Chapter 5; several operations can be performed

simultaneously and the increment and decrement operations can be values greater than 1. The

kernel does all of the requested operations atomically; no other process may access the

semaphore until all operations have completed.

A semaphore consists of the following elements:
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• Current value of the semaphore

• Process ID of the last process to operate on the semaphore

• Number of processes waiting for the semaphore value to be greater than its current value

• Number of processes waiting for the semaphore value to be zero

Associated with the semaphore are queues of processes blocked on that semaphore.

Semaphores are actually created in sets, with a semaphore set consisting of one or more

semaphores. There is a semctl system call that allows all of the semaphore values in the set to

be set at the same time. In addition, there is a sem_op system call that takes as an argument a

list of semaphore operations, each defined on one of the semaphores in a set. When this call is

made, the kernel performs the indicated operations one at a time. For each operation, the actual

function is specified by the value sem_op. The following are the possibilities:

• If sem_op is positive, the kernel increments the value of the semaphore and awakens all

processes waiting for the value of the semaphore to increase.

• If sem_op is 0, the kernel checks the semaphore value. If the semaphore value equals 0,

the kernel continues with the other operations on the list. Otherwise, the kernel increments

the number of processes waiting for this semaphore to be 0 and suspends the process to

wait for the event that the value of the semaphore equals 0.

• If sem_op is negative and its absolute value is less than or equal to the semaphore value,

the kernel adds sem_op (a negative number) to the semaphore value. If the result is 0, the

kernel awakens all processes waiting for the value of the semaphore to equal 0.

• If sem_op is negative and its absolute value is greater than the semaphore value, the

kernel suspends the process on the event that the value of the semaphore increases.

This generalization of the semaphore provides considerable flexibility in performing

process synchronization and coordination.
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Signals

A signal is a software mechanism that informs a process of the occurrence of asynchronous

events. A signal is similar to a hardware interrupt but does not employ priorities. That is, all

signals are treated equally; signals that occur at the same time are presented to a process one at a

time, with no particular ordering.

Processes may send each other signals, or the kernel may send signals internally. A signal

is delivered by updating a field in the process table for the process to which the signal is being

sent. Because each signal is maintained as a single bit, signals of a given type cannot be queued.

A signal is processed just after a process wakes up to run or whenever the process is preparing to

return from a system call. A process may respond to a signal by performing some default action

(e.g., termination), executing a signal handler function, or ignoring the signal.

Table 6.2 lists signals defined for UNIX SVR4.



-26-

Table 6.2   UNIX Signals

Value Name Description

01 SIGHUP Hang up; sent to process when kernel assumes that the
user of that process is doing no useful work

02 SIGINT Interrupt

03 SIGQUIT Quit; sent by user to induce halting of process and
production of core dump

04 SIGILL Illegal instruction

05 SIGTRAP Trace trap; triggers the execution of code for process
tracing

06 SIGIOT IOT instruction

07 SIGEMT EMT instruction

08 SIGFPE Floating-point exception

09 SIGKILL Kill; terminate process

10 SIGBUS Bus error

11 SIGSEGV Segmentation violation; process attempts to access
location outside its virtual address space

12 SIGSYS Bad argument to system call

13 SIGPIPE Write on a pipe that has no  readers attached to it

14 SIGALRM Alarm clock; issued when a process wishes to receive a
signal after a period of time

15 SIGTERM Software termination

16 SIGUSR1 User-defined signal 1

17 SIGUSR2 User-defined signal 2

18 SIGCHLD Death of a child

19 SIGPWR Power failure
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6.9  SOLARIS THREAD SYNCHRONIZATION PRIMITIVES

In addition to the concurrency mechanisms of UNIX SVR4, Solaris supports four thread

synchronization primitives:

• Mutual exclusion (mutex) locks

• Semaphores

• Multiple readers, single writer (readers/writer) locks

• Condition variables

Solaris implements these primitives within the kernel for kernel threads; they are also

provided in the threads library for user-level threads. Figure 6.15 shows the data structures for

these primitives. The initialization functions for the primitives fill in some of the

data members. Once a synchronization object is created, there are essentially only two operations

that can be performed: enter (acquire lock) and release (unlock). There are no mechanisms in the

kernel or the threads library to enforce mutual exclusion or to prevent deadlock. If a thread

attempts to access a piece of data or code that is supposed to be protected but does not use the

appropriate synchronization primitive, then such access occurs. If a thread locks an object and

then fails to unlock it, no kernel action is taken.

All of the synchronization primitives require the existence of a hardware instruction that

allows an object to be tested and set in one atomic operation, as discussed in Section 5.3.

Mutual Exclusion Lock

A mutex is used to ensure only one thread at a time can access the resource protected by the

mutex. The thread that locks the mutex must be the one that unlocks it. A thread attempts to

acquire a mutex lock by executing the mutex_enter primitive. If mutex_enter cannot set

the lock (because it is already set by another thread), the blocking action depends on type-



(a) MUTEX lock

(b) Semaphore

(c) Reader/writer lock

(d) Condition variable
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Figure 6.15   Solaris Synchronization Data Structures
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specific information stored in the mutex object. The default blocking policy is a spin lock: a

blocked thread polls the status of the lock while executing in a busy waiting loop. An interrupt-

based blocking mechanism is optional. In this latter case, the mutex includes a turnstile id

that identifies a queue of threads sleeping on this lock.

The operations on a mutex lock are:

mutex_enter() Acquires the lock, potentially blocking if it is already held

mutex_exit() Releases the lock, potentially unblocking a waiter

mutex_tryenter() Acquires the lock if it is not already held

The mutex_tryenter() primitive provides a nonblocking way of performing the mutual

exclusion function. This enables the programmer to use a busy-wait approach for user-level

threads, which avoids blocking the entire process because one thread is blocked.

Semaphores

Solaris provides classic counting semaphores, with the following primitives:

sema_p() Decrements the semaphore, potentially blocking the thread

sema_v() Increments the semaphore, potentially unblocking a waiting thread

sema_tryp()Decrements the semaphore if blocking is not required

Again, the sema_tryp() primitive permits busy waiting.

Readers/Writer Lock

The readers/writer lock allows multiple threads to have simultaneous read-only access to an

object protected by the lock. It also allows a single thread to access the object for writing at one

time, while excluding all readers. When the lock is acquired for writing it takes on the status of
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write lock: all threads attempting access for reading or writing must wait. If one or more

readers have acquired the lock, its status is read lock. The primitives are:

rw_enter() Attempts to acquire a lock as reader or writer.

rw_exit() Releases a lock as reader or writer.

rw_tryenter() Acquires the lock if blocking is not required.

rw_downgrade() A thread that has acquired a write lock converts it to a read lock.

Any waiting writer remains waiting until this thread releases the

lock. If there are no waiting writers, the primitive wakes up any

pending readers.

rw_tryupgrade() Attempts to convert a reader lock into a writer lock.

Condition Variables

A condition variable is used to wait until a particular condition is true. Condition variables must

be used in conjunction with a mutex lock. This implements a monitor of the type illustrated in

Figure 6.14. The primitives are:

cv_wait() Blocks until the condition is signaled

cv_signal() Wakes up one of the threads blocked in cv_wait()

cv_broadcast() Wakes up all of the threads blocked in cv_wait()

cv_wait() releases the associated mutex before blocking and reacquires it before

returning. Because reacquisition of the mutex may be blocked by other threads waiting for the

mutex, the condition that caused the wait must be retested. Thus, typical usage is as follows:

mutex_enter(&m)

 • •
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while (some_condition) {

cv_wait(&cv, &m);

}

 • •

mutex_exit(&m);

This allows the condition to be a complex expression, because it is protected by the mutex.
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8.3  UNIX AND SOLARIS MEMORY MANAGEMENT

Because UNIX is intended to be machine independent, its memory-management scheme will

vary from one system to the next. Earlier versions of UNIX simply used variable partitioning

with no virtual memory scheme. Current implementations of UNIX and Solaris make use of

paged virtual memory.

In SVR4 and Solaris, there are actually two separate memory-management schemes. The

paging system provides a virtual memory capability that allocates page frames in main memory

to processes and also allocates page frames to disk block buffers. Although this is an effective

memory-management scheme for user processes and disk I/O, a paged virtual memory scheme is

less suited to managing the memory allocation for the kernel. For this latter purpose, a kernel

memory allocator is used. We examine these two mechanisms in turn.

Paging System

Data Structures

For paged virtual memory, UNIX makes use of a number of data structures that, with minor

adjustment, are machine independent (Figure 8.22 and Table 8.5):

• Page table: Typically, there will be one page table per process, with one entry for each

page in virtual memory for that process.

• Disk block descriptor: Associated with each page of a process is an entry in this table that

describes the disk copy of the virtual page.

• Page frame data table: Describes each frame of real memory and is indexed by frame

number. This table is used by the replacement algorithm.

• Swap-use table: There is one swap-use table for each swap device, with one entry for each

page on the device.



Figure 8.22  UNIX SVR4 Memory Management Formats
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Table 8.5  UNIX SVR4 Memory Management Parameters (page 1 of 2)

Page Table Entry

Page frame number
Refers to frame in real memory.

Age
Indicates how long the page has been in memory without being referenced. The length and contents of this

field are processor dependent.

Copy on write
Set when more than one process shares a page. If one of the processes writes into the page, a separate copy of

the page must first be made for all other processes that share the page. This feature allows the copy
operation to be deferred until necessary and avoided in cases where it turns out not to be necessary.

Modify
Indicates page has been modified.

Reference
Indicates page has been referenced. This bit is set to zero when the page is first loaded and may be

periodically reset by the page replacement algorithm.

Valid
Indicates page is in main memory.

Protect
Indicates whether write operation is allowed.

Disk Block Descriptor

Swap device number
Logical device number of the secondary device that holds the corresponding page. This allows more than one

device to  be used for swapping.

Device block  number
Block location of page on swap device.

Type of storage
Storage may be swap unit or executable file. In the latter case, there is an indication as to whether the virtual

memory to be allocated should be cleared first.
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Table 8.5   UNIX SVR4 Memory Management Parameters (page 2 of 2)

Page Frame Data Table Entry

Page State
Indicates whether this frame is available or has an associated page. In the latter case, the

status of the page is specified: on swap device, in executable file, or DMA in progress.

Reference count
Number of processes that reference the page.

Logical device
Logical device that contains a copy of the page.

Block number
Block location of the page copy on the logical device.

Pfdata pointer
Pointer to other pfdata table entries on a list of free pages and on a hash queue of pages.

Swap-use Table Entry

Reference count
Number of page table entries that point to a page on the swap device.

Page/storage unit number
Page identifier on storage unit.

 Most of the fields defined in Table 8.5 are self-explanatory. A few warrant further

comment. The Age field in the page table entry is an indication of how long it has been since a

program referenced this frame. However, the number of bits and the frequency of update of this

field are implementation dependent. Therefore, there is no universal UNIX use of this field for

page replacement policy.

The Type of Storage field in the disk block descriptor is needed for the following reason:

When an executable file is first used to create a new process, only a portion of the program and

data for that file may be loaded into real memory. Later, as page faults occur, new portions of the

program and data are loaded. It is only at the time of first loading that virtual memory pages are

created and assigned to locations on one of the devices to be used for swapping. At that time, the
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operating system is told whether it needs to clear (set to 0) the locations in the page frame before

the first loading of a block of the program or data.

Page Replacement

The page frame data table is used for page replacement. Several pointers are used to create

lists within this table. All of the available frames are linked together in a list of free frames

available for bringing in pages. When the number of available frames drops below a certain

threshold, the kernel will steal a number of frames to compensate.

The page replacement algorithm used in SVR4 is a refinement of the clock policy

algorithm (Figure 8.16) known as the two-handed clock algorithm (Figure 8.23). The algorithm

uses the reference bit in the page table entry for each page in memory that is eligible (not locked)

to be swapped out. This bit is set to 0 when the page is first brought in and set to 1 when the page

is referenced for a read or write. One hand in the clock algorithm, the fronthand, sweeps through

the pages on the list of eligible pages and sets the reference bit to 0 on each page. Sometime

later, the backhand sweeps through the same list and checks the reference bit. If the bit is set to 1,

then that page has been referenced since the fronthand swept by; these frames are ignored. If the

bit is still set to 0, then the page has not been referenced in the time interval between the visit by

fronthand and backhand; these pages are placed on a list to be paged out.

Two parameters determine the operation of the algorithm:

• Scanrate: The rate at which the two hands scan through the page list, in pages per second

• Handspread: The gap between fronthand and backhand

These two parameters have default values set at boot time based on the amount of physical

memory. The scanrate parameter can be altered to meet changing conditions. The parameter

varies linearly between the values slowscan and fastscan (set at configuration time) as the

amount of free memory varies between the values lotsfree and minfree. In other words, as the
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amount of free memory shrinks, the clock hands move more rapidly to free up more pages. The

handspread parameter determines the gap between the fronthand and the backhand and therefore,

together with scanrate, determines the window of opportunity to use a page before it is swapped

out due to lack of use.

Kernel Memory Allocator

The kernel generates and destroys small tables and buffers frequently during the course of

execution, each of which requires dynamic memory allocation. [VAHA96] lists the following

examples:

• The pathname translation routing may allocate a buffer to copy a pathname from user

space.

• The allocb() routine allocates STREAMS buffers of arbitrary size.

• Many UNIX implementations allocate zombie structures to retain exit status and resource

usage information about deceased processes.

• In SVR4 and Solaris, the kernel allocates many objects (such as proc structures, vnodes,

and file descriptor blocks) dynamically when needed.

Most of these blocks are significantly smaller than the typical machine page size, and therefore

the paging mechanism would be inefficient for dynamic kernel memory allocation. For SVR4, a

modification of the buddy system, described in Section 7.2, is used.

In buddy systems, the cost to allocate and free a block of memory is low compared to that

of best-fit or first-fit policies [KNUT97]. However, in the case of kernel memory management,

the allocation and free operations must be made as fast as possible. The drawback of the buddy

system is the time required to fragment and coalesce blocks.

Barkley and Lee at AT&T proposed a variation known as a lazy buddy system [BARK89],

and this is the technique adopted for SVR4. The authors observed that UNIX often exhibits
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steady-state behavior in kernel memory demand; that is, the amount of demand for blocks of a

particular size varies slowly in time. Therefore, if a block of size 2i is released and is

immediately coalesced with its buddy into a block of size 2i+1, the kernel may next request a

block of size 2i, which may necessitate splitting the larger block again. To avoid this unnecessary

coalescing and splitting, the lazy buddy system defers coalescing until it seems likely that it is

needed, and then coalesces as many blocks as possible.

The lazy buddy system uses the following parameters:

Ni = current number of blocks of size 2i.

Ai = current number of blocks of size 2i that are allocated (occupied).

Gi = current number of blocks of size 2i that are globally free; these are blocks that are

eligible for coalescing; if the buddy of such a block becomes globally free, then the

two blocks will be coalesced into a globally free block of size 2i+1. All free blocks

(holes) in the standard buddy system could be considered globally free.

Li = current number of blocks of size 2i that are locally free; these are blocks that are

not eligible for coalescing. Even if the buddy of such a block becomes free, the

two blocks are not coalesced. Rather, the locally free blocks are retained in

anticipation of future demand for a block of that size.

The following relationship holds:

Ni = Ai + Gi + Li

In general, the lazy buddy system tries to maintain a pool of locally free blocks and only

invokes coalescing if the number of locally free blocks exceeds a threshold. If there are too many
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locally free blocks, then there is a chance that there will be a lack of free blocks at the next level

to satisfy demand. Most of the time, when a block is freed, coalescing does not occur, so there is

minimal bookkeeping and operational costs. When a block is to be allocated, no distinction is

made between locally and globally free blocks; again, this minimizes bookkeeping.

The criterion used for coalescing is that the number of locally free blocks of a given size

should not exceed the number of allocated blocks of that size (i.e., we must have Li ! Ai). This is

a reasonable guideline for restricting the growth of locally free blocks, and experiments in

[BARK89] confirm that this scheme results in noticeable savings.

To implement the scheme, the authors define a delay variable as follows:

Di = Ai – Li = Ni – 2Li – Gi

Figure 8.24 shows the algorithm.



Initial value of Di is 0

After an operation, the value of Di is updated as follows

(I) if the next operation is a block allocate request:
if there is any free block, select one to allocate

if the selected block is locally free
then Di := Di + 2

else Di := Di + 1

otherwise
first get two blocks by splitting a larger one into two (recursive operation)
allocate one and mark the other locally free
Di remains unchanged (but D may change for other block sizes because of the

recursive call)

(II) if the next operation is a block free request
Case Di ! 2

mark it locally free and free it locally
Di := Di - 2

Case Di = 1
mark it globally free and free it globally; coalesce if possible
Di := 0

Case Di = 0
mark it globally free and free it globally; coalesce if possible
select one locally free block of size 2i and free it globally; coalesce if possible
Di := 0

Figure 8.24  Lazy Buddy System Algorithm
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9.3  TRADITIONAL UNIX SCHEDULING

In this section we examine traditional UNIX scheduling, which is used in both SVR3 and 4.3

BSD UNIX. These systems are primarily targeted at the time-sharing interactive environment.

The scheduling algorithm is designed to provide good response time for interactive users while

ensuring that low-priority background jobs do not starve. Although this algorithm has been

replaced in modern UNIX systems, it is worthwhile to examine the approach because it is

representative of practical time-sharing scheduling algorithms. The scheduling scheme for SVR4

includes an accommodation for real-time requirements, and so its discussion is deferred to

Chapter 10.

The traditional UNIX scheduler employs multilevel feedback using round robin within

each of the priority queues. The system makes use of 1-second preemption. That is, if a running

process does not block or complete within 1 second, it is preempted. Priority is based on process

type and execution history. The following formulas apply:

! 

CPU j i( ) =
CPU j i "1( )

2

Pj i( ) = Base j +
CPU j i( )

2
+ nice j

where

CPUj(i) = Measure of processor utilization by process j through interval i

Pj(i) = Priority of process j at beginning of interval i; lower values equal higher

priorities

Basej = Base priority of process j

nicej = user-controllable adjustment factor
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The priority of each process is recomputed once per second, at which time a new

scheduling decision is made. The purpose of the base priority is to divide all processes into fixed

bands of priority levels. The CPU and nice components are restricted to prevent a process from

migrating out of its assigned band (assigned by the base priority level). These bands are used to

optimize access to block devices (e.g., disk) and to allow the operating system to respond quickly

to system calls. In decreasing order of priority, the bands are:

• Swapper

• Block I/O device control

• File manipulation

• Character I/O device control

• User processes

This hierarchy should provide the most efficient use of the I/O devices. Within the user

process band, the use of execution history tends to penalize processor-bound processes at the

expense of I/O-bound processes. Again, this should improve efficiency. Coupled with the round-

robin preemption scheme, the scheduling strategy is well equipped to satisfy the requirements for

general-purpose time sharing.

An example of process scheduling is shown in Figure 9.17. Processes A, B, and C are

created at the same time with base priorities of 60 (we will ignore the nice value). The clock

interrupts the system 60 times per second and increments a counter for the running process. The

example assumes that none of the processes block themselves and that no other processes are

ready  to run. Compare this with Figure 9.16.
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10.4  UNIX SVR4 SCHEDULING

The scheduling algorithm used in UNIX SVR4 is a complete overhaul of the scheduling

algorithm used in earlier UNIX systems (described in Section 9.3). The new algorithm is

designed to give highest preference to real-time processes, next-highest preference to kernel-

mode processes, and lowest preference to other user-mode processes, referred to as time-shared

processes.

The two major modifications implemented in SVR4 are:

1. The addition of a preemptable static priority scheduler and the introduction of a set of 160

priority levels divided into three priority classes.

2. The insertion of preemption points. Because the basic kernel is not preemptive, it can

only be split into processing steps that must run to completion without interruption. In

between the processing steps, safe places known as preemption points have been

identified where the kernel can safely interrupt processing and schedule a new process. A

safe place is defined as a region of code where all kernel data structures are either

updated and consistent or locked via a semaphore.

Figure 10.12 illustrates the 160 priority levels defined in SVR4. Each process is defined to

belong to one of three priority classes and is assigned a priority level within that class. The

classes are:

• Real time (159-100): Processes at these priority levels are guaranteed to be selected to run

before any kernel or time-sharing process. In addition, real-time processes can make use of

preemption points to preempt kernel processes and user processes.

• Kernel (99-60): Processes at these priority levels are guaranteed to be selected to run

before any time-sharing process but must defer to real-time processes.



Figure 10.12   SVR4 Priority Classes
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• Time-shared (59-0): The lowest-priority processes, intended for user applications other

than real-time applications.

Figure 10.13 indicates how scheduling is implemented in SVR4. A dispatch queue is

associated with each priority level, and processes at a given priority level are executed in round-

robin fashion. A bit-map vector, dqactmap, contains one bit for each priority level; the bit is

set to one for any priority level with a nonempty queue. Whenever a running process leaves the

Running state, due to a block, timeslice expiration, or preemption, the dispatcher checks

dqactmap and dispatches a ready process from the highest-priority nonempty queue. In

addition, whenever a defined preemption point is reached, the kernel checks a flag called

kprunrun. If set, this indicates that at least one real-time process is in the Ready state, and the

kernel preempts the current process if it is of lower priority than the highest-priority real-time

ready process.

Within the time-sharing class, the priority of a process is variable. The scheduler reduces

the priority of a process each time it uses up a time quantum, and it raises its priority if it blocks

on an event or resource. The time quantum allocated to a time-sharing process depends on its

priority, ranging from 100 ms for priority 0 to 10 ms for priority 59. Each real-time process has a

fixed priority and a fixed time quantum.
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11.8  UNIX SVR4 I/O

In UNIX, each individual I/O device is associated with a special file. These are managed by the

file system and are read and written in the same manner as user data files. This provides a clean,

uniform interface to users and processes. To read from or write to a device, read and write

requests are made for the special file associated with the device.

Figure 11.12 illustrates the logical structure of the I/O facility. The file subsystem manages

files on secondary storage devices. In addition, it serves as the process interface to devices,

because these are treated as files.

There are two types of I/O in UNIX: buffered and unbuffered. Buffered I/O passes through

system buffers, whereas unbuffered I/O typically involves the DMA facility, with the transfer

taking place directly between the I/O module and the process I/O area. For buffered I/O, two

types of buffers are used: system buffer caches and character queues.

Buffer Cache

The buffer cache in UNIX is essentially a disk cache. I/O operations with disk are handled

through the buffer cache. The data transfer between the buffer cache and the user process space

always occurs using DMA. Because both the buffer cache and the process I/O area are in main

memory, the DMA facility is used in this case to perform a memory-to-memory copy. This does

not use up any processor cycles, but it does consume bus cycles.

To manage the buffer cache, three lists are maintained:

• Free list: List of all slots in the cache (a slot is referred to as a buffer in UNIX; each slot

holds one disk sector) that are available for allocation

• Device list: List of all buffers currently associated with each disk

• Driver I/O queue: List of buffers that are actually undergoing or waiting for I/O on a

particular device
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Figure 11.12   UNIX I/O Structure
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All buffers should be on the free list or on the driver I/O queue list. A buffer, once

associated with a device, remains associated with the device even if it is on the free list, until is

actually reused and becomes associated with another device. These lists are maintained as

pointers associated with each buffer rather than physically separate lists.

When a reference is made to a physical block number on a particular device, the operating

system first checks to see if the block is in the buffer cache. To minimize the search time, the

device list is organized as a hash table, using a technique similar to the overflow with chaining

technique discussed in Appendix 8A (Figure 8.27b). Figure 11.13 depicts the general

organization of the buffer cache. There is a hash table of fixed length that contains pointers into

the buffer cache. Each reference to a (device#, block#) maps into a particular entry in the hash

table. The pointer in that entry points to the first buffer in the chain. A hash pointer associated

with each buffer points to the next buffer in the chain for that hash table entry. Thus, for all

(device#, block#) references that map into the same hash table entry, if the corresponding block

is in the buffer cache, then that buffer will be in the chain for that hash table entry. Thus, the

length of the search of the buffer cache is reduced by a factor of on the order of N, where N is the

length of the hash table.

For block replacement, a least-recently-used algorithm is used: After a buffer has been

allocated to a disk block, it cannot be used for another block until all other buffers have been

used more recently. The free list preserves this least-recently-used order.

Character Queue

Block-oriented devices, such as disk and tape, can be effectively served by the buffer cache. A

different form of buffering is appropriate for character-oriented devices, such as terminals and

printers. A character queue is either written by the I/O device and read by the process or written

by the process and read by the device. In both cases, the producer/consumer model introduced in

Chapter 5 is used. Thus, character queues may only be read once; as each character is read, it is
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effectively destroyed. This is in contrast to the buffer cache, which may be read multiple times

and hence follows the readers/writers model (also discussed in Chapter 5).

Unbuffered I/O

Unbuffered I/O, which is simply DMA between device and process space, is always the fastest

method for a process to perform I/O. A process that is performing unbuffered I/O is locked in

main memory and cannot be swapped out. This reduces the opportunities for swapping by tying

up part of main memory, thus reducing the overall system performance. Also, the I/O device is

tied up with the process for the duration of the transfer, making it unavailable for other

processes.

UNIX Devices

Among the categories of devices recognized by UNIX are the following:

• Disk drives

• Tape drives

• Terminals

• Communication lines

• Printers

Table 11.5 shows the types of I/O suited to each type of device. Disk drives are heavily

used in UNIX, are block oriented, and have the potential for reasonable high throughput. Thus,

I/O for these devices tends to be unbuffered or via buffer cache. Tape drives are functionally

similar to disk drives and use similar I/O schemes.

Because terminals involve relatively slow exchange of characters, terminal I/O typically

makes use of the character queue. Similarly, communication lines require serial processing of

bytes of data for input or output and are best handled by character queues. Finally, the type of
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I/O used for a printer will generally depend on its speed. Slow printers will normally use the

character queue, while a fast printer might employ unbuffered I/O. A buffer cache could be used

for a fast printer. However, because data going to a printer are never reused, the overhead of the

buffer cache is unnecessary.

Table 11.5 Device I/O in UNIX

Unbuffered I/O Buffer Cache Character Queue

Disk drive X X

Tape drive X X

Terminals X

Communication lines X

Printers X X
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12.7  UNIX FILE MANAGEMENT

In the UNIX file system, six types of files are distinguished:

• Regular, or ordinary: Contains arbitrary data in zero or more data blocks. Regular files

contain information entered in them by a user, an application program, or a system utility

program. The file system does not impose any internal structure to a regular file but treats it

as a stream of bytes.

• Directory: Contains a list of file names plus pointers to associated inodes (index nodes),

described later. Directories are hierarchically organized (Figure 12.4). Directory files are

actually ordinary files with special write protection privileges so that only the file system

can write into them, while read access is available to user programs.

• Special: Contains no data, but provides a mechanism to map physical devices to file

names. The file names are used to access peripheral devices, such as  terminals and

printers. Each I/O device is associated with a special file, as discussed in Section 11.8.

• Named pipes: As discussed in Section 6.7, a pipe is an interprocess communications

facility. A pipe file buffers data received in its input so that a process that reads from the

pipe's output receives the data on a first-in-first-out basis.

• Links: In essence, a link is an alternative file name for an existing file.

• Symbolic links: This is a data file that contains the name of the file it is linked to.

In this section, we are concerned with the handling of ordinary files, which correspond to

what most systems treat as files.

Inodes

All types of UNIX files are administered by the operating system by means of inodes. An inode

(index node) is a control structure that contains the key information needed by the operating
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system for a particular file. Several file names may be associated with a single inode, but an

active inode is associated with exactly one file, and each file is controlled by exactly one inode.

The attributes of the file as well as its permissions and other control information are stored

in the inode. Table 12.4 lists the file attributes stored in the inode of a typical UNIX

implementation.

On the disk, there is an inode table, or inode list, that contains the inodes of all the files in

the file system. When a file is opened, its inode is brought into main memory and stored in a

memory-resident inode table.

Table 12.4 Information in a UNIX Disk-Resident Inode

File Mode 16-bit flag that stores access and execution permissions associated with
the file.

12-14 File type (regular, directory, character or block special, FIFO pipe
9-11 Execution flags
8 Owner read permission
7 Owner write permission
6 Owner execute permission
5 Group read permission
4 Group write permission
3 Group execute permission
2 Other read permission
1 Other write permission
0 Other execute permission

Link Count Number of directory references to this inode

Owner ID Individual owner of file

Group ID Group  owner associated with this file

File Size Number of bytes in file

File Addresses 39 bytes of address information

Last Accessed Time of last file access

Last Modified Time of last file modification

Inode Modified Time of last inode modification
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File Allocation

File allocation is done on a block basis. Allocation is dynamic, as needed, rather than using

preallocation. Hence, the blocks of a file on disk are not necessarily contiguous. An indexed

method is used to keep track of each file, with part of the index stored in the inode for the file.

The inode includes 39 bytes of address information that is organized as thirteen 3-byte addresses,

or pointers. The first 10 addresses point to the first 10 data blocks of the file. If the file is longer

than 10 blocks long, then one or more levels of indirection is used as follows:

• The eleventh address in the inode points to a block on disk that contains the next portion of

the index. This is referred to as the single indirect block. This block contains the pointers to

succeeding blocks in the file.

• If the file contains more blocks, the twelfth address in the inode points to a double indirect

block. This block contains a list of addresses of additional single indirect blocks. Each of

single indirect blocks, in turn, contains pointers to file blocks.

• If the file contains still more blocks, the thirteenth address in the inode points to a triple

indirect block that is a third level of indexing. This block points to additional double

indirect blocks.

All of this is illustrated in Figure 12.13. The first entry in the inode contains information

about this file or directory (Table 12.4). The remaining entries are the addresses just described.

The total number of data blocks in a file depends on the capacity of the fixed-size blocks in the

system. In UNIX System V, the length of a block is 1 Kbyte, and each block can hold a total of

256 block addresses. Thus, the maximum size of a file with this scheme is over 16 Gbytes (Table

12.5).

This scheme has several advantages:
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Table 12.5  Capacity of a UNIX File

Level Number of Blocks Number of Bytes

Direct 10 10K

Single Indirect 256 256K

Double Indirect 256 " 256 = 65K 65M

Triple Indirect 256 " 65K = 16M 16G

1. The inode is of fixed size and relatively small and hence may be kept in main memory for

long periods.

2. Smaller files may be accessed with little or no indirection, reducing processing and disk

access time.

3. The theoretical maximum size of a file is large enough to satisfy virtually all applications.

Directories

Directories are structured in a hierarchical tree. Each directory can contain files and/or other

directories. A directory that is inside another directory is referred to as a subdirectory. As was

mentioned, a directory is simply a file that contains a list of file names plus pointers to associated

inodes. Figure 12.14 shows the overall structure. Each directory entry (dentry) contains a name

for the associated file or subdirectory plus an integer called the i-number (index number). When

the file or directory is accessed, its i-number is used as an index into the inode table.

Volume Structure

A UNIX file system resides on a single logical disk or disk partition and is laid out with the

following elements:

• Boot block: Contains code required to boot the operating system
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• Superblock: Contains attributes and information about the file system, such as partition

size, and inode table size

• Inode table: The collection of inodes for each file

• Data blocks: Storage space available for data files and subdirectories


